10 Characteristics of Good Problem Solvers
Professional psychologist, motivational writer
Good problem solvers are good thinkers. They have less drama and problems to begin with and don't get overly emotional when faced with a problem. They usually see problems as challenges and life experiences and try to stand above them, objectively.
Good problem solvers use a combination of intuition and logic to come up with their solutions. Intuition has more to do with the emotional and instinctive side of us and logic is more related to our cognition and thinking. Good problem solvers use both of these forces to get as much information as they can to come up with the best possible solution. In addition, they are reasonably open minded but logically skeptical.
Some of the general characteristics of good problem solvers are:
1. They don't need to be right all the time: They focus on finding the right solution rather than wanting to prove they are right at all costs.
2. They go beyond their own conditioning: They go beyond a fixated mind set and open up to new ways of thinking and can explore options.
3. They look for opportunity within the problem: They see problems as challenges and try to learn from them.
4. They know the difference between complex and simple thinking: They know when to do a systematic and complex thinking and when to go through short cuts and find an easy solution.
5. They have clear definition of what the problem is: They can specifically identity the problem.
6. They use the power of words to connect with people: They are socially well developed and find ways to connect with people and try to find happy-middle solutions.
7. They don't create problems for others: They understand that to have their problem solved they can't create problems for others. Good problems solvers who create fair solutions make a conscious effort not to harm others for a self-interest intention. They know such acts will have long term consequences even if the problem is temporarily solved.
8. They do prevention more than intervention: Good problem solvers have a number of skills to prevent problems from happening in the first place. They usually face less drama, conflict, and stressful situations since they have clear boundaries, don't let their rights violated and do not violate other people's rights. They are more of a positive thinker so naturally they are surrounded with more positivity and have more energy to be productive.
9. They explore their options: They see more than one solution to a problem and find new and productive ways to deal with new problems as they arise. They also have a backup plan if the first solution does not work and can ask for support and advise when needed.
We Need Your Support
Other news outlets have retreated behind paywalls. At HuffPost, we believe journalism should be free for everyone.
Would you help us provide essential information to our readers during this critical time? We can't do it without you.
Can't afford to contribute? Support HuffPost by creating a free account and log in while you read.
You've supported HuffPost before, and we'll be honest — we could use your help again . We view our mission to provide free, fair news as critically important in this crucial moment, and we can't do it without you.
Whether you give once or many more times, we appreciate your contribution to keeping our journalism free for all.
Whether you give just one more time or sign up again to contribute regularly, we appreciate you playing a part in keeping our journalism free for all.
Already contributed? Log in to hide these messages.
10. They have reasonable expectations: Good problem solvers have reasonable expectations as to what the solution would be. They understand that there are many elements effecting a situation and that idealistic ways of thinking and going about solving a problem will be counterproductive.
At the end, good problem solvers do not have too many irrational fears when dealing with problems. They can visualize the worst case scenario, work their way out of it and let go of the fear attached to it. Fear can make your logic and intuition shady and your decisions unproductive.
From Our Partner
More in wellness, more in life.
- Live Online Training
- Upcoming seminars
- ENDORSED PROGRAMMES from The Institute of Leadership
- In-house Seminars
- Strategic Performance Management
- Internal Expert and Consultant Retainer Scheme
- Personal Coaching
- Business Strategy and Development
- Human Resources Management
- Production, Operations and Materials Management
- Quality, Environmental, Health and Safety Management
- Conicon Blog
- Our clients
- Photo gallery
Problem Solving: The 10 characteristics that stand out in Problem Solvers
Effective problem solving is now among the most popular skills around the world.
Every day it turns out that most people can’t handle problems/crises that come either personal or professional!
At the same time, it’s an issue where decision-making people need training, so they don’t make jerky moves because of panic.
Effective problem solving is finding solutions to problems (internally – externally) using the right methods and tools – in essence to find ways to solve any problem that comes quickly and effectively
Below you will see the 10 characteristics that stand out in Problem Solvers:
1. They don’t waste their time proving they’re right – they focus on the solution.
2. They come out of their box and find ideas to explore their choices (they don’t think the same way – they shift their thinking)
3. They see opportunities through the problem and don’t over-think the problem all the time to feel better.
4. They know the difference between simple thinking and complexity (most people have complicated thinking because they are influenced by external factors such as media, society etc.)
5. They make clear exactly what is a problem – without being directly affected by their own perception which is not objective.
6. They use communication (power of words) to communicate with the world – rather than intimidate it.
7. They do not cause problems to others to solve their own (characteristic of most people)
8. They prefer prevention rather than intervention (if there were conditions for prevention it wouldn’t swell things so much)
9. Τhey search for their options (with different ways of thinking and have a problem management team)
10. They have reasonable expectations and know all the scenarios of each choice (good, neutral and bad)
Surely now that you have seen them you realize that there are very few people who have these characteristics!
Also these people know the 4 simplest steps for Problem Solving:
1. Specify the problem (what is really the problem – and not focus on the symptoms of the problem)
2. Create alternatives (for all scenarios, good, neutral and bad)
3. Evaluation and selection of alternatives (always based on the impact of each solution)
4. Implementation of Solutions (if it doesn’t work they always have a Plan B
The only thing that is certain is that problem solving is not innate in individuals. It needs training and friction with the subject!
Most remember the importance of this skill when it’s already too late!
Do you have these characteristics?
Christofi Vasiliki Communication, Soft Skills NAMA Certified Anger Management Specialist, PR Specialist Trainer and Coach
Do you feel that communication is a two-way process in your organization?
View Results
How we can Contribute?
Contact us here to find out what we can do for you or your business.
ConiCon Ltd
Leading professional training and management consulting firm based in Limassol, Cyprus.
Privacy policy
This website use cookies, please read our Privacy policy .
- LIVE ONLINE TRAINING
- Endorsed programs
- Conicon team
- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
Overview of the Problem-Solving Mental Process
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.
- Identify the Problem
- Define the Problem
- Form a Strategy
- Organize Information
- Allocate Resources
- Monitor Progress
- Evaluate the Results
Frequently Asked Questions
Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.
The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.
It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.
In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.
The following steps include developing strategies and organizing knowledge.
1. Identifying the Problem
While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.
Some strategies that you might use to figure out the source of a problem include :
- Asking questions about the problem
- Breaking the problem down into smaller pieces
- Looking at the problem from different perspectives
- Conducting research to figure out what relationships exist between different variables
2. Defining the Problem
After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address
At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.
3. Forming a Strategy
After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.
The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.
- Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
- Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.
Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.
4. Organizing Information
Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.
When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.
5. Allocating Resources
Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.
If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.
At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.
6. Monitoring Progress
After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.
It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.
Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .
7. Evaluating the Results
After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.
Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.
A Word From Verywell
It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.
Get Advice From The Verywell Mind Podcast
Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.
Follow Now : Apple Podcasts / Spotify / Google Podcasts
You can become a better problem solving by:
- Practicing brainstorming and coming up with multiple potential solutions to problems
- Being open-minded and considering all possible options before making a decision
- Breaking down problems into smaller, more manageable pieces
- Asking for help when needed
- Researching different problem-solving techniques and trying out new ones
- Learning from mistakes and using them as opportunities to grow
It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.
Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.
If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.
Davidson JE, Sternberg RJ, editors. The Psychology of Problem Solving . Cambridge University Press; 2003. doi:10.1017/CBO9780511615771
Sarathy V. Real world problem-solving . Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
7.3 Problem-Solving
Learning objectives.
By the end of this section, you will be able to:
- Describe problem solving strategies
- Define algorithm and heuristic
- Explain some common roadblocks to effective problem solving
People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.
The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.
PROBLEM-SOLVING STRATEGIES
When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.
Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.
A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.
Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?
A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):
- When one is faced with too much information
- When the time to make a decision is limited
- When the decision to be made is unimportant
- When there is access to very little information to use in making the decision
- When an appropriate heuristic happens to come to mind in the same moment
Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.
Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.
Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.
Additional Problem Solving Strategies :
- Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
- Analogy – is using a solution that solves a similar problem.
- Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
- Divide and conquer – breaking down large complex problems into smaller more manageable problems.
- Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
- Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
- Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
- Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
- Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
- Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
- Reduction – adapting the problem to be as similar problems where a solution exists.
- Research – using existing knowledge or solutions to similar problems to solve the problem.
- Root cause analysis – trying to identify the cause of the problem.
The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.
One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :
Missionary-Cannibal Problem
Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.
Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.
The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:
- 1. Only one disk can be moved at a time.
- 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
- 3. No disc may be placed on top of a smaller disk.
Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.
Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.
The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.
GESTALT PSYCHOLOGY AND PROBLEM SOLVING
As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.
As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage (1990) suggesting that while collecting data for what would later be his book The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.
While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).
While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.
Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground. Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).
Solving puzzles.
Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.
How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)
Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:
Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.
Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).
What steps did you take to solve this puzzle? You can read the solution at the end of this section.
Pitfalls to problem solving.
Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.
Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.
Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).
In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.
The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.
Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.
Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.
Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.
References:
Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology
Review Questions:
1. A specific formula for solving a problem is called ________.
a. an algorithm
b. a heuristic
c. a mental set
d. trial and error
2. Solving the Tower of Hanoi problem tends to utilize a ________ strategy of problem solving.
a. divide and conquer
b. means-end analysis
d. experiment
3. A mental shortcut in the form of a general problem-solving framework is called ________.
4. Which type of bias involves becoming fixated on a single trait of a problem?
a. anchoring bias
b. confirmation bias
c. representative bias
d. availability bias
5. Which type of bias involves relying on a false stereotype to make a decision?
6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.
a. social adjustment
b. student load payment options
c. emotional learning
d. insight learning
7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.
a. functional fixedness
c. working memory
Critical Thinking Questions:
1. What is functional fixedness and how can overcoming it help you solve problems?
2. How does an algorithm save you time and energy when solving a problem?
Personal Application Question:
1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?
anchoring bias
availability heuristic
confirmation bias
functional fixedness
hindsight bias
problem-solving strategy
representative bias
trial and error
working backwards
Answers to Exercises
algorithm: problem-solving strategy characterized by a specific set of instructions
anchoring bias: faulty heuristic in which you fixate on a single aspect of a problem to find a solution
availability heuristic: faulty heuristic in which you make a decision based on information readily available to you
confirmation bias: faulty heuristic in which you focus on information that confirms your beliefs
functional fixedness: inability to see an object as useful for any other use other than the one for which it was intended
heuristic: mental shortcut that saves time when solving a problem
hindsight bias: belief that the event just experienced was predictable, even though it really wasn’t
mental set: continually using an old solution to a problem without results
problem-solving strategy: method for solving problems
representative bias: faulty heuristic in which you stereotype someone or something without a valid basis for your judgment
trial and error: problem-solving strategy in which multiple solutions are attempted until the correct one is found
working backwards: heuristic in which you begin to solve a problem by focusing on the end result
Share This Book
- Increase Font Size
- Anxiety Disorder
- Bipolar Disorder
- Schizophrenia
- Adjustment Disorder
- Agoraphobia
- Antisocial Personality Disorder
- Borderline Personality Disorder
- Childhood ADHD
- Dissociative Identity Disorder
- Narcissistic Personality Disorder
- Oppositional Defiant Disorder
- Panic Attack
- Postpartum Depression
- Schizoaffective Disorder
- Seasonal Affective Disorder
- Sex Addiction
- Social Anxiety
- Specific Phobias
- Teenage Depression
Wellness Topics
- Black Mental Health
- Emotional Health
- Sex & Relationships
- Understanding Therapy
- Workplace Mental Health
Original Series
- My Life with OCD
- Caregivers Chronicles
- Empathy at Work
- Sex, Love & All of the Above
- Parent Central
- Mindful Moment
News & Events
- Mental Health News
- Live Town Hall: Mental Health in Focus
- Inside Mental Health
- Inside Schizophrenia
- Inside Bipolar
- ADHD Symptoms Quiz
- Anxiety Symptoms Quiz
- Autism Quiz: Family & Friends
- Autism Symptoms Quiz
- Bipolar Disorder Quiz
- Borderline Personality Test
- Childhood ADHD Quiz
- Depression Symptoms Quiz
- Eating Disorder Quiz
- Narcissim Symptoms Test
- OCD Symptoms Quiz
- Psychopathy Test
- PTSD Symptoms Quiz
- Schizophrenia Quiz
- Attachment Style Quiz
- Career Test
- Do I Need Therapy Quiz?
- Domestic Violence Screening Quiz
- Emotional Type Quiz
- Loneliness Quiz
- Parenting Style Quiz
- Personality Test
- Relationship Quiz
- Stress Test
- What's Your Sleep Like?
Treatment & Support
- Find Support
- Suicide Prevention
- Drugs & Medications
- Find a Therapist
5 Effective Problem-Solving Strategies
Got a problem you’re trying to solve? Strategies like trial and error, gut instincts, and “working backward” can help. We look at some examples and how to use them.
We all face problems daily. Some are simple, like deciding what to eat for dinner. Others are more complex, like resolving a conflict with a loved one or figuring out how to overcome barriers to your goals.
No matter what problem you’re facing, these five problem-solving strategies can help you develop an effective solution.
What are problem-solving strategies?
To effectively solve a problem, you need a problem-solving strategy .
If you’ve had to make a hard decision before then you know that simply ruminating on the problem isn’t likely to get you anywhere. You need an effective strategy — or a plan of action — to find a solution.
In general, effective problem-solving strategies include the following steps:
- Define the problem.
- Come up with alternative solutions.
- Decide on a solution.
- Implement the solution.
Problem-solving strategies don’t guarantee a solution, but they do help guide you through the process of finding a resolution.
Using problem-solving strategies also has other benefits . For example, having a strategy you can turn to can help you overcome anxiety and distress when you’re first faced with a problem or difficult decision.
The key is to find a problem-solving strategy that works for your specific situation, as well as your personality. One strategy may work well for one type of problem but not another. In addition, some people may prefer certain strategies over others; for example, creative people may prefer to depend on their insights than use algorithms.
It’s important to be equipped with several problem-solving strategies so you use the one that’s most effective for your current situation.
1. Trial and error
One of the most common problem-solving strategies is trial and error. In other words, you try different solutions until you find one that works.
For example, say the problem is that your Wi-Fi isn’t working. You might try different things until it starts working again, like restarting your modem or your devices until you find or resolve the problem. When one solution isn’t successful, you try another until you find what works.
Trial and error can also work for interpersonal problems . For example, if your child always stays up past their bedtime, you might try different solutions — a visual clock to remind them of the time, a reward system, or gentle punishments — to find a solution that works.
2. Heuristics
Sometimes, it’s more effective to solve a problem based on a formula than to try different solutions blindly.
Heuristics are problem-solving strategies or frameworks people use to quickly find an approximate solution. It may not be the optimal solution, but it’s faster than finding the perfect resolution, and it’s “good enough.”
Algorithms or equations are examples of heuristics.
An algorithm is a step-by-step problem-solving strategy based on a formula guaranteed to give you positive results. For example, you might use an algorithm to determine how much food is needed to feed people at a large party.
However, many life problems have no formulaic solution; for example, you may not be able to come up with an algorithm to solve the problem of making amends with your spouse after a fight.
3. Gut instincts (insight problem-solving)
While algorithm-based problem-solving is formulaic, insight problem-solving is the opposite.
When we use insight as a problem-solving strategy we depend on our “gut instincts” or what we know and feel about a situation to come up with a solution. People might describe insight-based solutions to problems as an “aha moment.”
For example, you might face the problem of whether or not to stay in a relationship. The solution to this problem may come as a sudden insight that you need to leave. In insight problem-solving, the cognitive processes that help you solve a problem happen outside your conscious awareness.
4. Working backward
Working backward is a problem-solving approach often taught to help students solve problems in mathematics. However, it’s useful for real-world problems as well.
Working backward is when you start with the solution and “work backward” to figure out how you got to the solution. For example, if you know you need to be at a party by 8 p.m., you might work backward to problem-solve when you must leave the house, when you need to start getting ready, and so on.
5. Means-end analysis
Means-end analysis is a problem-solving strategy that, to put it simply, helps you get from “point A” to “point B” by examining and coming up with solutions to obstacles.
When using means-end analysis you define the current state or situation (where you are now) and the intended goal. Then, you come up with solutions to get from where you are now to where you need to be.
For example, a student might be faced with the problem of how to successfully get through finals season . They haven’t started studying, but their end goal is to pass all of their finals. Using means-end analysis, the student can examine the obstacles that stand between their current state and their end goal (passing their finals).
They could see, for example, that one obstacle is that they get distracted from studying by their friends. They could devise a solution to this obstacle by putting their phone on “do not disturb” mode while studying.
Let’s recap
Whether they’re simple or complex, we’re faced with problems every day. To successfully solve these problems we need an effective strategy. There are many different problem-solving strategies to choose from.
Although problem-solving strategies don’t guarantee a solution, they can help you feel less anxious about problems and make it more likely that you come up with an answer.
8 sources collapsed
- Chu Y, et al. (2011). Human performance on insight problem-solving: A review. https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1094&context=jps
- Dumper K, et al. (n.d.) Chapter 7.3: Problem-solving in introductory psychology. https://opentext.wsu.edu/psych105/chapter/7-4-problem-solving/
- Foulds LR. (2017). The heuristic problem-solving approach. https://www.tandfonline.com/doi/abs/10.1057/jors.1983.205
- Gick ML. (1986). Problem-solving strategies. https://www.tandfonline.com/doi/abs/10.1080/00461520.1986.9653026
- Montgomery ME. (2015). Problem solving using means-end analysis. https://sites.psu.edu/psych256sp15/2015/04/19/problem-solving-using-means-end-analysis/
- Posamentier A, et al. (2015). Problem-solving strategies in mathematics. Chapter 3: Working backwards. https://www.worldscientific.com/doi/10.1142/9789814651646_0003
- Sarathy V. (2018). Real world problem-solving. https://www.frontiersin.org/articles/10.3389/fnhum.2018.00261/full
- Woods D. (2000). An evidence-based strategy for problem solving. https://www.researchgate.net/publication/245332888_An_Evidence-Based_Strategy_for_Problem_Solving
Read this next
Making big decisions can be a difficult task. Setting deadlines and asking for support can help you confidently move ahead.
Dealing with a problem can fee a lot more manageable when you have a plan. Try these 5 steps for becoming a better problem-solver.
A lack of communication in relationships doesn't have to be a dealbreaker. Learn how to improve your communication skills at work and at home.
- What is the Difference Between Impulsive and Intrusive Thoughts? READ MORE
The blue personality is motivated by a deep desire for connection and loyalty. Blue personalities likely strive in structured environments that allow…
Incongruent affect describes verbally expressed emotions misaligned with physical expressions. For example, someone may smile while telling a sad…
Plushophilia is the attraction to stuffed animals and plush objects. Understanding the signs and causes may help reduce misconceptions and provide…
Trichophobia is an inaccurate strong fear of hair. This fear may lead to avoidance behaviors and physical discomfort. But support is available to help…
Conventional wisdom involves broadly accepted beliefs. Knowing how to challenge conventional wisdom may support healthy well-being and personal growth.
Hedonic adaptation is the return to a base level of happiness despite life’s ups and downs. Knowing its impacts on mental health may help you find…
What is Problem Solving? (Steps, Techniques, Examples)
By Status.net Editorial Team on May 7, 2023 — 4 minutes to read
What Is Problem Solving?
Definition and importance.
Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease.
Problem-Solving Steps
The problem-solving process typically includes the following steps:
- Identify the issue : Recognize the problem that needs to be solved.
- Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
- Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
- Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
- Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
- Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
- Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.
Defining the Problem
To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:
- Brainstorming with others
- Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
- Analyzing cause and effect
- Creating a problem statement
Generating Solutions
Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:
- Creating a list of potential ideas to solve the problem
- Grouping and categorizing similar solutions
- Prioritizing potential solutions based on feasibility, cost, and resources required
- Involving others to share diverse opinions and inputs
Evaluating and Selecting Solutions
Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:
- SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
- Decision-making matrices
- Pros and cons lists
- Risk assessments
After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.
Implementing and Monitoring the Solution
Implement the chosen solution and monitor its progress. Key actions include:
- Communicating the solution to relevant parties
- Setting timelines and milestones
- Assigning tasks and responsibilities
- Monitoring the solution and making adjustments as necessary
- Evaluating the effectiveness of the solution after implementation
Utilize feedback from stakeholders and consider potential improvements.
Problem-Solving Techniques
During each step, you may find it helpful to utilize various problem-solving techniques, such as:
- Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
- Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
- SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
- Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.
Brainstorming
When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:
- Generate a diverse range of solutions
- Encourage all team members to participate
When brainstorming:
- Reserve judgment until the session is over
- Encourage wild ideas
- Combine and improve upon ideas
Root Cause Analysis
For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:
- 5 Whys : Ask “why” five times to get to the underlying cause.
- Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
- Pareto Analysis : Determine the few most significant causes underlying the majority of problems.
SWOT Analysis
SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:
- List your problem’s strengths, such as relevant resources or strong partnerships.
- Identify its weaknesses, such as knowledge gaps or limited resources.
- Explore opportunities, like trends or new technologies, that could help solve the problem.
- Recognize potential threats, like competition or regulatory barriers.
SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.
Mind Mapping
A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:
- Write the problem in the center of a blank page.
- Draw branches from the central problem to related sub-problems or contributing factors.
- Add more branches to represent potential solutions or further ideas.
Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.
- Problem Solving Skills: 25 Performance Review Phrases Examples
- How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
- 30 Examples: Self Evaluation Comments for Problem Solving
- Effective Decision Making Process: 7 Steps with Examples
- 174 Performance Feedback Examples (Reliability, Integrity, Problem Solving)
- How to Write Inspiring Core Values? 5 Steps with Examples
Skip to content
“ Creating Successful Leaders ”
May 8, 2024 6 Characteristics of a Problem Solver
A version of this blog post was published in July, 2019.
At times, problems will take care of themselves…but we certainly can’t count on that. In order to move the needle, put out “fires,” or add a little innovation to the workplace, it’s important to take charge of your destiny and be a problem solver.
Being a problem solver can be highly rewarding. Rather than either A) Sitting around and waiting for things to resolve themselves or B) Counting on others to solve your problems, it’s better to take a proactive approach. For one, the problems you’re facing may not resolve on their own. Or, they may not resolve themselves in the way you want. If you take “approach B” and let others solve problems for you, you lose crucial opportunities to learn and grow. Not to mention, your fate (or the fate of a project) will always be in others’ hands, beyond your control.
It is much better (and often more reliable) to be proactive and attempt to solve problems yourself. That doesn’t mean you have to go about problem solving on your own. The most adept problem solvers use whatever resources (human or otherwise) at their disposal.
Work on becoming a problem solver in your workplace! Focus on building the following six traits:
1. be courageous.
Some risk may be involved in finding solutions to sub-optimal situations. You might have to speak up, contact your superiors, or tap into uncharted territory. Be courageous, knowing that you’ll be learning valuable skills, no matter the outcome.
Not every solution is going to keep you squarely within your comfort zone. Be prepared to be flexible.
3. Innovate
Think outside the box! The best solutions may be paths you have not yet explored in your workplace. Look to other industries or unlikely sources for problem-solving inspiration.
4. Be Resourceful
Don’t be afraid to seek help. Online research, your HR department, co-workers, or your professional connections could be sources of advice or inspiration for you.
5. Build Unity
If a problem is affecting an entire department or group of people, it pays to rally the troops and get everyone working toward solving your mutual issue. You know what they say about several heads being better than one!
6. Be Vocal
Silence is the worst way to deal with a sticky issue. Refusing to address a problem with open communication will only suppress it or force people to talk about it in whispers.
Embrace your courageous, vocal, innovative, and adaptive sides! Rally the troops and use whatever resources are available to you. Be a proactive problem solver, and you’ll gain a better handle on your future. Not only that, you’ll also develop valuable skills along the way and likely gain recognition from your superiors as someone who is unafraid to face problems head-on.
MARGARET SMITH IS A CAREER COACH, AUTHOR , INSIGHTS® DISCOVERY (AND DEEPER DISCOVERY ) LICENSED PRACTITIONER, AND FOUNDER OF UXL . SHE HOSTS WORKSHOPS FOR PEOPLE WHO NEED CAREER OR PERSONAL GUIDANCE. CHECK OUT MARGARET’S ONLINE LEADERSHIP COURSE .
Pass it on:
- Click to print (Opens in new window)
- Click to share on Facebook (Opens in new window)
- Click to share on LinkedIn (Opens in new window)
- Click to email a link to a friend (Opens in new window)
- Click to share on Twitter (Opens in new window)
- Click to share on Pinterest (Opens in new window)
- Click to share on Reddit (Opens in new window)
Tags: be a problem solver , better problem solving , margaret smith career coach , margaret smith leadership , problem solving leader , problem-solver traits
- Leave a comment
- Posted under Advice from a Life Coach , Communication , Leadership
Tell us what you think! Cancel reply
Create a free website or blog at WordPress.com.
- Already have a WordPress.com account? Log in now.
- Subscribe Subscribed
- Copy shortlink
- Report this content
- View post in Reader
- Manage subscriptions
- Collapse this bar
IMAGES
COMMENTS
Nov 24, 2013 · 10. They have reasonable expectations: Good problem solvers have reasonable expectations as to what the solution would be. They understand that there are many elements effecting a situation and that idealistic ways of thinking and going about solving a problem will be counterproductive.
Mar 17, 2020 · Surely now that you have seen them you realize that there are very few people who have these characteristics! Also these people know the 4 simplest steps for Problem Solving: 1. Specify the problem (what is really the problem – and not focus on the symptoms of the problem) 2. Create alternatives (for all scenarios, good, neutral and bad) 3.
Apr 18, 2022 · It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.
MODELS FOR PROBLEM SOLVING. There are many quality tools that can be applied to solving a problem, with steps and procedures specific to the technique. Some approaches are geared more toward identifying true root causes than others, some are more general problem-solving techniques, and others offer support for sustaining successful change.
A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic.
Nov 1, 2022 · When we use insight as a problem-solving strategy we depend on our “gut instincts” or what we know and feel about a situation to come up with a solution. People might describe insight-based ...
PS Characteristics CS@VT Intro Problem Solving in Computer Science ©2011-12 McQuain& Shaffer Problem-solver Characteristics 1 If there is a problem you can't solve, then there is an easier problem you can solve: find it. George Polya Opportunity is missed by most people because it is dressed in overalls and looks like work. Thomas Edison
Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields.
What Is Problem Solving? Definition and Importance Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Problem-Solving Steps The problem-solving process typically includes the following steps:...
May 8, 2024 · If a problem is affecting an entire department or group of people, it pays to rally the troops and get everyone working toward solving your mutual issue. You know what they say about several heads being better than one! 6. Be Vocal. Silence is the worst way to deal with a sticky issue.