6.1 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach will suffice. But the two approaches can also be used to address the same research question in complementary ways. For example, Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into three broad categories: cross-sectional research, correlational research, and observational research. 

First, cross-sectional research  involves comparing two or more pre-existing groups of people. What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a cross-sectional study because the researcher did not manipulate the students’ nationalities. As another example, if we wanted to compare the memory test performance of a group of cannabis users with a group of non-users, this would be considered a cross-sectional study because for ethical and practical reasons we would not be able to randomly assign participants to the cannabis user and non-user groups. Rather we would need to compare these pre-existing groups which could introduce a selection bias (the groups may differ in other ways that affect their responses on the dependent variable). For instance, cannabis users are more likely to use more alcohol and other drugs and these differences may account for differences in the dependent variable across groups, rather than cannabis use per se.

Cross-sectional designs are commonly used by developmental psychologists who study aging and by researchers interested in sex differences. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect) rather than a direct effect of age. For this reason, longitudinal studies in which one group of people is followed as they age offer a superior means of studying the effects of aging. Once again, cross-sectional designs are also commonly used to study sex differences. Since researchers cannot practically or ethically manipulate the sex of their participants they must rely on cross-sectional designs to compare groups of men and women on different outcomes (e.g., verbal ability, substance use, depression). Using these designs researchers have discovered that men are more likely than women to suffer from substance abuse problems while women are more likely than men to suffer from depression. But, using this design it is unclear what is causing these differences. So, using this design it is unclear whether these differences are due to environmental factors like socialization or biological factors like hormones?

When researchers use a participant characteristic to create groups (nationality, cannabis use, age, sex), the independent variable is usually referred to as an experimenter-selected independent variable (as opposed to the experimenter-manipulated independent variables used in experimental research). Figure 6.1 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a cross-sectional study because it is unclear whether the independent variable was manipulated by the researcher or simply selected by the researcher. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then the independent variable was experimenter-manipulated and it is a true experiment. If the researcher simply asked participants whether they made daily to-do lists or not, then the independent variable it is experimenter-selected and the study is cross-sectional. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a cross-sectional study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead. Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed. The crucial point is that what defines a study as experimental or cross-sectional l is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 6.1  Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Second, the most common type of non-experimental research conducted in Psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.  More specifically, in correlational research , the researcher measures two continuous variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related. Correlational research is very similar to cross-sectional research, and sometimes these terms are used interchangeably. The distinction that will be made in this book is that, rather than comparing two or more pre-existing groups of people as is done with cross-sectional research, correlational research involves correlating two continuous variables (groups are not formed and compared).

Third,   observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.2  shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) is in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 7.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Figure 6.2 Internal Validity of Correlation, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlation studies lower still.

Notice also in  Figure 6.2  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

Key Takeaways

  • Non-experimental research is research that lacks the manipulation of an independent variable.
  • There are two broad types of non-experimental research. Correlational research that focuses on statistical relationships between variables that are measured but not manipulated, and observational research in which participants are observed and their behavior is recorded without the researcher interfering or manipulating any variables.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.
  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Creative Commons License

Share This Book

  • Increase Font Size
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

explain the characteristics of non experimental research

Home Market Research

Non-experimental research: What it is, overview & advantages

non-experimental-research

Non-experimental research is the type of research that lacks an independent variable. Instead, the researcher observes the context in which the phenomenon occurs and analyzes it to obtain information.

Unlike experimental research , where the variables are held constant, non-experimental research happens during the study when the researcher cannot control, manipulate or alter the subjects but relies on interpretation or observations to conclude.

This means that the method must not rely on correlations, surveys , or case studies and cannot demonstrate an actual cause and effect relationship.

Characteristics of non-experimental research

Some of the essential characteristics of non-experimental research are necessary for the final results. Let’s talk about them to identify the most critical parts of them.

characteristics of non-experimental research

  • Most studies are based on events that occurred previously and are analyzed later.
  • In this method, controlled experiments are not performed for reasons such as ethics or morality.
  • No study samples are created; on the contrary, the samples or participants already exist and develop in their environment.
  • The researcher does not intervene directly in the environment of the sample.
  • This method studies the phenomena exactly as they occurred.

Types of non-experimental research

Non-experimental research can take the following forms:

Cross-sectional research : Cross-sectional research is used to observe and analyze the exact time of the research to cover various study groups or samples. This type of research is divided into:

  • Descriptive: When values are observed where one or more variables are presented.
  • Causal: It is responsible for explaining the reasons and relationship that exists between variables in a given time.

Longitudinal research: In a longitudinal study , researchers aim to analyze the changes and development of the relationships between variables over time. Longitudinal research can be divided into:

  • Trend: When they study the changes faced by the study group in general.
  • Group evolution: When the study group is a smaller sample.
  • Panel: It is in charge of analyzing individual and group changes to discover the factor that produces them.

LEARN ABOUT: Quasi-experimental Research

When to use non-experimental research

Non-experimental research can be applied in the following ways:

  • When the research question may be about one variable rather than a statistical relationship about two variables.
  • There is a non-causal statistical relationship between variables in the research question.
  • The research question has a causal research relationship, but the independent variable cannot be manipulated.
  • In exploratory or broad research where a particular experience is confronted.

Advantages and disadvantages

Some advantages of non-experimental research are:

  • It is very flexible during the research process
  • The cause of the phenomenon is known, and the effect it has is investigated.
  • The researcher can define the characteristics of the study group.

Among the disadvantages of non-experimental research are:

  • The groups are not representative of the entire population.
  • Errors in the methodology may occur, leading to research biases .

Non-experimental research is based on the observation of phenomena in their natural environment. In this way, they can be studied later to reach a conclusion.

Difference between experimental and non-experimental research

Experimental research involves changing variables and randomly assigning conditions to participants. As it can determine the cause, experimental research designs are used for research in medicine, biology, and social science. 

Experimental research designs have strict standards for control and establishing validity. Although they may need many resources, they can lead to very interesting results.

Non-experimental research, on the other hand, is usually descriptive or correlational without any explicit changes done by the researcher. You simply describe the situation as it is, or describe a relationship between variables. Without any control, it is difficult to determine causal effects. The validity remains a concern in this type of research. However, it’s’ more regarding the measurements instead of the effects.

LEARN MORE: Descriptive Research vs Correlational Research

Whether you should choose experimental research or non-experimental research design depends on your goals and resources. If you need any help with how to conduct research and collect relevant data, or have queries regarding the best approach for your research goals, contact us today! You can create an account with our survey software and avail of 88+ features including dashboard and reporting for free.

Create a free account

MORE LIKE THIS

explain the characteristics of non experimental research

QuestionPro Workforce Has All The Feels – Release of the New Sentiment Analysis

Dec 19, 2024

The Impact Of Synthetic Data On Modern Research

The Impact Of Synthetic Data On Modern Research

Poor Knowledge Management

Companies are losing $ billions with gaps in market research – are you?

Dec 18, 2024

CultureAmp vs Qualtrics

CultureAmp vs Qualtrics: The Best Employee Experience Platform

Dec 16, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

discount

Up to 65% off on all yearly plans! 🎁 Start fresh with a yearly plan. Now 65% off! ❄️ 🏷️

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

explain the characteristics of non experimental research

HubSpot CRM

explain the characteristics of non experimental research

Google Sheets

explain the characteristics of non experimental research

Google Analytics

explain the characteristics of non experimental research

Microsoft Excel

explain the characteristics of non experimental research

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

explain the characteristics of non experimental research

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is non-experimental research: Definition, types & examples

What is non-experimental research: Definition, types & examples

Defne Çobanoğlu

The experimentation method is very useful for getting information on a specific subject. However, when experimenting is not possible or practical, there is another way of collecting data for those interested. It's a non-experimental way, to say the least.

In this article, we have gathered information on non-experimental research, clearly defined what it is and when one should use it, and listed the types of non-experimental research. We also gave some useful examples to paint a better picture. Let us get started. 

  • What is non-experimental research?

Non-experimental research is a type of research design that is based on observation and measuring instead of experimentation with randomly assigned participants.

What characterizes this research design is the fact that it lacks the manipulation of independent variables . Because of this fact, the non-experimental research is based on naturally occurring conditions, and there is no involvement of external interventions. Therefore, the researchers doing this method must not rely heavily on interviews, surveys , or case studies.

  • When to use non-experimental research?

An experiment is done when a researcher is investigating the relationship between one or two phenomena and has a theory or hypothesis on the relationship between two variables that are involved. The researcher can carry out an experiment when it is ethical, possible, and feasible to do one.

However, when an experiment can not be done because of a limitation, then they decide to opt for a non-experimental research design . Non-experimental research is considered preferable in some conditions, including:

  • When the manipulation of the independent variable is not possible because of ethical or practical concerns
  • When the subjects of an experimental design can not be randomly assigned to treatments.
  • When the research question is too extensive or it relates to a general experience.
  • When researchers want to do a starter research before investing in more extensive research.
  • When the research question is about the statistical relationship between variables , but in a noncausal context.
  • Characteristics of non-experimental research

Non-experimental research has some characteristics that clearly define the framework of this research method. They provide a clear distinction between experimental design and non-experimental design. Let us see some of them:

  • Non-experimental research does not involve the manipulation of variables .
  • The aim of this research type is to explore the factors as they naturally occur .
  • This method is used when experimentation is not possible because of ethical or practical reasons .
  • Instead of creating a sample or participant group, the existing groups or natural thresholds are used during the research.
  • This research method is not about finding causality between two variables.
  • Most studies are done on past events or historical occurrences to make sense of specific research questions.
  • Types of non-experimental research

Non-experimental research types

Non-experimental research types

What makes research non-experimental research is the fact that the researcher does not manipulate the factors, does not randomly assign the participants, and observes the existing groups. But this research method can also be divided into different types. These types are:

Correlational research:

In correlation studies, the researcher does not manipulate the variables and is not interested in controlling the extraneous variables. They only observe and assess the relationship between them. For example, a researcher examines students’ study hours every day and their overall academic performance. The positive correlation this between study hours and academic performance suggests a statistical association. 

Quasi-experimental research:

In quasi-experimental research, the researcher does not randomly assign the participants into two groups. Because you can not deliberately deprive someone of treatment, the researcher uses natural thresholds or dividing points . For example, examining students from two different high schools with different education methods.

Cross-sectional research:

In cross-sectional research, the researcher studies and compares a portion of a population at the same time . It does not involve random assignment or any outside manipulation. For example, a study on smokers and non-smokers in a specific area.

Observational research:

In observational research, the researcher once again does not manipulate any aspect of the study, and their main focus is observation of the participants . For example, a researcher examining a group of children playing in a playground would be a good example.

  • Non-experimental research examples

Non-experimental research is a good way of collecting information and exploring relationships between variables. It can be used in numerous fields, from social sciences, economics, psychology, education, and market research. When gathering information using secondary research is not enough and an experiment can not be done, this method can bring out new information.

Non-experimental research example #1

Imagine a researcher who wants to see the connection between mobile phone usage before bedtime and the amount of sleep adults get in a night . They can gather a group of individuals to observe and present them with some questions asking about the details of their day, frequency and duration of phone usage, quality of sleep, etc . And observe them by analyzing the findings.

Non-experimental research example #2

Imagine a researcher who wants to explore the correlation between job satisfaction levels among employees and what are the factors that affect this . The researcher can gather all the information they get about the employees’ ages, sexes, positions in the company, working patterns, demographic information, etc . 

The research provides the researcher with all the information to make an analysis to identify correlations and patterns. Then, it is possible for researchers and administrators to make informed predictions.

  • Frequently asked questions about non-experimental research

When not to use non-experimental research?

There are some situations where non-experimental research is not suitable or the best choice. For example, the aim of non-experimental research is not about finding causality therefore, if the researcher wants to explore the relationship between two variables, then this method is not for them. Also, if the control over the variables is extremely important to the test of a theory, then experimentation is a more appropriate option.

What is the difference between experimental and non-experimental research?

Experimental research is an example of primary research where the researcher takes control of all the variables, randomly assigns the participants into different groups, and studies them in a pre-determined environment to test a hypothesis. 

On the contrary, non-experimental research does not intervene in any way and only observes and studies the participants in their natural environments to make sense of a phenomenon

What makes a quasi-experiment a non-experiment?

The same as true experimentation, quasi-experiment research also aims to explore a cause-and-effect relationship between independent and dependent variables. However, in quasi-experimental research, the participants are not randomly selected. They are assigned to groups based on non-random criteria .

Is a survey a non-experimental study?

Yes, as the main purpose of a survey or questionnaire is to collect information from participants without outside interference, it makes the survey a non-experimental study. Surveys are used by researchers when experimentation is not possible because of ethical reasons, but first-hand data is needed

What is non-experimental data?

Non-experimental data is data collected by researchers via using non-experimental methods such as observations, interpretation, and interactions. Non-experimental data could both be qualitative or quantitative, depending on the situation.

Advantages of non-experimental research

Non-experimental research has its positive sides that a researcher should have in mind when going through a study. They can start their research by going through the advantages. These advantages are:

  • It is used to observe and analyze past events .
  • This method is more affordable than a true experiment .
  • As the researcher can adapt the methods during the study, this research type is more flexible than an experimental study.
  • This method allows the researchers to answer specific questions .

Disadvantages of non-experimental research

Even though non-experimental research has its advantages, it also has some disadvantages a researcher should be mindful of. Here are some of them:

  • The findings of non-experimental research can not be generalized to the whole population. Therefore, it has low external validity .
  • This research is used to explore only a single variable .
  • Non-experimental research designs are prone to researcher bias and may not produce neutral results.
  • Final words

A non-experimental study differs from an experimental study in that there is no intervention or change of internal or extraneous elements. It is a smart way to collect information without the limitations of experimentation. These limitations could be about ethical or practical problems. When you can not do proper experimentation, your other option is to study existing conditions and groups to draw conclusions. This is a non-experimental design .

In this article, we have gathered information on non-experimental research to shed light on the details of this research method. If you are thinking of doing a study, make sure to have this information in mind. And lastly, do not forget to visit our articles on other research methods and so much more!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

Related posts.

Simple Steps: Can you add a header image to Google Forms?

Simple Steps: Can you add a header image to Google Forms?

Timur Yavuz

Formstack vs. Jotform: Which form builder is better?

Formstack vs. Jotform: Which form builder is better?

How to reduce employee turnover and retain tech talent in your startup

How to reduce employee turnover and retain tech talent in your startup

Segba Eseoghene Keva Laya

Non-Experimental Research: Designs, Characteristics, Types and Examples

The non-experimental research is one in which the variables of the study are not controlled or manipulated. To develop the research, the authors observe the phenomena to be studied in their natural environment, obtaining the data directly to analyze them later.

The difference between non-experimental and experimental research is that variables are manipulated in the latter and the study is carried out in controlled environments. So, for example, you experience gravity by intentionally dropping a stone from several heights.

Non-experimental research

On the other hand, in non-experimental research, researchers go, if necessary, to the place where the phenomenon to be studied happens. For example, to know the drinking habits of young people, surveys are conducted or observed directly as they do, but no drink is offered.

This type of research is very common in fields such as psychology, the measurement of unemployment rates, consumption studies or opinion polls. In general, these are pre-existing facts, developed under their own laws or internal rules

  • 1.1 Differences with experimental designs
  • 2 characteristics
  • 3.1 Transverse or transectional design
  • 3.2 Longitudinal design
  • 4.1 Effects of alcohol
  • 4.2 Opinion polls
  • 4.3 School performance
  • 5 References

Non-experimental research designs

As opposed to what happens with experimental research, in the non-experimental the variables studied are not deliberately manipulated. The way to proceed is to observe the phenomena to be analyzed as they are presented in their natural context.

In this way, there are no stimuli or conditions for the subjects that are being studied. These are found in their natural environment, without being transferred to any laboratory or controlled environment.

The existing variables are of two different types. The first are the independent calls, while the so-called dependents are a direct consequence of the previous ones. In this type of research, the relationships between causes and effects are investigated in order to draw valid conclusions.

Given that no exprofeso situations are created to investigate them, it can be affirmed that the non-experimental designs study the already existing situations developed under their own internal rules. In fact, another denomination that is given is that of investigations ex post facto ; that is, about facts fulfilled.

Differences with experimental designs

The main difference between both types of research is that in the experimental designs there is a manipulation of the variables by the researcher. Once the desired conditions have been created, the studies measure the effects of them.

For its part, in non-experimental investigations this manipulation does not exist, but rather the data is collected directly in the environment in which the events take place.

It can not be said that one method is better than the other. Each one is equally valid depending on what is going to be studied and / or on the perspective that the researcher wants to give to his work.

By its own characteristics, if the research is experimental it will be much easier to repeat it to ensure the results. However, the control of the environment makes some variables that may appear spontaneously more difficult to measure. It is just the opposite of what happens with non-experimental designs.

characteristics

As previously mentioned, the first characteristic of this type of research is that there is no manipulation of the variables studied.

Normally, these are phenomena that have already occurred and are analyzed a posteriori. Apart from this characteristic, other peculiarities present in these designs can be pointed out:

- Non-experimental research is widely used when, for ethical reasons (such as giving drink to young people), there is no option to conduct controlled experiments.

- No groups are formed to study them, but these are already pre-existing in their natural environments.

-The data is collected directly, and then analyzed and interpreted. There is no direct intervention on the phenomenon.

- It is very common that non-experimental designs are used in applied research, since they study the facts as they occur naturally.

- Given the characteristics presented, this type of research is not valid to establish unequivocal causal relationships.

Transverse or transectional design

This type of non-experimental research design is used to observe and record the data at a specific time and, by its very nature, unique. In this way, the analysis is focused on the effects of a phenomenon that occurs at a particular time.

As an example, we can mention the study of the consequences of an earthquake on the housing in a city or the school failure rates in a given year. You can also take more than one variable, turning the study into a more complex one.

The transversal design allows to cover diverse groups of individuals, objects or phenomena. At the time of developing them, they can be divided into two different groups:

Descriptive

The objective is to investigate those incidents and their values, in which one or more variables appear. Once the data is obtained, a description of them is simply made.

In these designs, we try to establish the relationships between several variables that have occurred at a given moment. These variables are not described one by one, but rather they try to explain how they are related.

Longitudinal design

Contrary to what happens with the previous design, in the longitudinal the researchers intend to analyze the changes suffered by certain variables over time. You can also investigate how the relationships between these variables evolve during this period.

To achieve this goal it is necessary to collect data at different time points. There are three types within this design:

They study the changes that happen in some population in general.

Of group evolution

The subjects studied are smaller groups or subgroups.

Similar to the previous ones but with specific groups that are measured at all times. These investigations are useful to analyze the individual changes together with the group, allowing to know what element has produced the changes in question.

In general terms, these designs are prepared for the study of events that have already happened and, therefore, it is impossible to control the variables. They are very frequent in statistical fields of all kinds, both to measure the incidence of some factors and for opinion studies.

Effects of alcohol

A classic example of non-experimental research is studies on the effects of alcohol on the human body. Since it is not ethical to give drink to the subjects studied, these designs are used to obtain results.

The way to achieve this would be to go to the places where alcohol is habitually consumed. There is measured the degree that this substance reaches in blood (or you can take data from the police or a hospital). With this information, we will proceed to compare the different individual reactions, extracting the conclusions about it.

Opinion polls

Any survey that tries to measure the opinion of a certain group on a topic is done through non-experimental designs. For example, electoral polls are very common in most countries.

School performance

It would only be necessary to collect the statistics of the results of the school children offered by the schools themselves. If, in addition, you want to complete the study, you can search for information on the socioeconomic status of the students.

Analyzing each data and relating them to each other, a study is obtained about how the socioeconomic level of families affects the performance of school children.

  • APA rules. Non-experimental research - What they are and how to elaborate them. Retrieved from normasapa.net
  • EcuREd. Non-experimental research. Retrieved from ecured.cu
  • Methodology2020. Experimental and non-experimental research. Retrieved from metodologia2020.wikispaces.com
  • Rajeev H. Dehejia, Sadek Wahba. Propensity Score-Matching Methods for Nonexperimental Causal Studies. Retrieved from business.baylor.edu
  • ReadingCraze.com. Research Design: Experimental and Nonexperimental Research. Retrieved from readingcraze.com
  • Reio, Thomas G. Nonexperimental research: strengths, weaknesses and issues of precision. Retrieved from emeraldinsight.com
  • Wikipedia. Research design. Retrieved from en.wikipedia.org

Recent Posts

  • Experimental Vs Non-Experimental Research: 15 Key Differences

busayo.longe

There is a general misconception around research that once the research is non-experimental, then it is non-scientific, making it more important to understand what experimental and experimental research entails. Experimental research is the most common type of research, which a lot of people refer to as scientific research. 

Non experimental research, on the other hand, is easily used to classify research that is not experimental. It clearly differs from experimental research, and as such has different use cases. 

In this article, we will be explaining these differences in detail so as to ensure proper identification during the research process.

What is Experimental Research?  

Experimental research is the type of research that uses a scientific approach towards manipulating one or more control variables of the research subject(s) and measuring the effect of this manipulation on the subject. It is known for the fact that it allows the manipulation of control variables. 

This research method is widely used in various physical and social science fields, even though it may be quite difficult to execute. Within the information field, they are much more common in information systems research than in library and information management research.

Experimental research is usually undertaken when the goal of the research is to trace cause-and-effect relationships between defined variables. However, the type of experimental research chosen has a significant influence on the results of the experiment.

Therefore bringing us to the different types of experimental research. There are 3 main types of experimental research, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research

Pre-experimental research is the simplest form of research, and is carried out by observing a group or groups of dependent variables after the treatment of an independent variable which is presumed to cause change on the group(s). It is further divided into three types.

  • One-shot case study research 
  • One-group pretest-posttest research 
  • Static-group comparison

Quasi-experimental Research

The Quasi type of experimental research is similar to true experimental research, but uses carefully selected rather than randomized subjects. The following are examples of quasi-experimental research:

  • Time series 
  • No equivalent control group design
  • Counterbalanced design.

True Experimental Research

True experimental research is the most accurate type,  and may simply be called experimental research. It manipulates a control group towards a group of randomly selected subjects and records the effect of this manipulation.

True experimental research can be further classified into the following groups:

  • The posttest-only control group 
  • The pretest-posttest control group 
  • Solomon four-group 

Pros of True Experimental Research

  • Researchers can have control over variables.
  • It can be combined with other research methods.
  • The research process is usually well structured.
  • It provides specific conclusions.
  • The results of experimental research can be easily duplicated.

Cons of True Experimental Research

  • It is highly prone to human error.
  • Exerting control over extraneous variables may lead to the personal bias of the researcher.
  • It is time-consuming.
  • It is expensive. 
  • Manipulating control variables may have ethical implications.
  • It produces artificial results.

What is Non-Experimental Research?  

Non-experimental research is the type of research that does not involve the manipulation of control or independent variable. In non-experimental research, researchers measure variables as they naturally occur without any further manipulation.

This type of research is used when the researcher has no specific research question about a causal relationship between 2 different variables, and manipulation of the independent variable is impossible. They are also used when:

  • subjects cannot be randomly assigned to conditions.
  • the research subject is about a causal relationship but the independent variable cannot be manipulated.
  • the research is broad and exploratory
  • the research pertains to a non-causal relationship between variables.
  • limited information can be accessed about the research subject.

There are 3 main types of non-experimental research , namely; cross-sectional research, correlation research, and observational research.

Cross-sectional Research

Cross-sectional research involves the comparison of two or more pre-existing groups of people under the same criteria. This approach is classified as non-experimental because the groups are not randomly selected and the independent variable is not manipulated.

For example, an academic institution may want to reward its first-class students with a scholarship for their academic excellence. Therefore, each faculty places students in the eligible and ineligible group according to their class of degree.

In this case, the student’s class of degree cannot be manipulated to qualify him or her for a scholarship because it is an unethical thing to do. Therefore, the placement is cross-sectional.

Correlational Research

Correlational type of research compares the statistical relationship between two variables .Correlational research is classified as non-experimental because it does not manipulate the independent variables.

For example, a researcher may wish to investigate the relationship between the class of family students come from and their grades in school. A questionnaire may be given to students to know the average income of their family, then compare it with CGPAs. 

The researcher will discover whether these two factors are positively correlated, negatively corrected, or have zero correlation at the end of the research.

Observational Research

Observational research focuses on observing the behavior of a research subject in a natural or laboratory setting. It is classified as non-experimental because it does not involve the manipulation of independent variables.

A good example of observational research is an investigation of the crowd effect or psychology in a particular group of people. Imagine a situation where there are 2 ATMs at a place, and only one of the ATMs is filled with a queue, while the other is abandoned.

The crowd effect infers that the majority of newcomers will also abandon the other ATM.

You will notice that each of these non-experimental research is descriptive in nature. It then suffices to say that descriptive research is an example of non-experimental research.

Pros of Observational Research

  • The research process is very close to a real-life situation.
  • It does not allow for the manipulation of variables due to ethical reasons.
  • Human characteristics are not subject to experimental manipulation.

Cons of Observational Research

  • The groups may be dissimilar and nonhomogeneous because they are not randomly selected, affecting the authenticity and generalizability of the study results.
  • The results obtained cannot be absolutely clear and error-free.

What Are The Differences Between Experimental and Non-Experimental Research?    

  • Definitions

Experimental research is the type of research that uses a scientific approach towards manipulating one or more control variables and measuring their defect on the dependent variables, while non-experimental research is the type of research that does not involve the manipulation of control variables.

The main distinction in these 2 types of research is their attitude towards the manipulation of control variables. Experimental allows for the manipulation of control variables while non-experimental research doesn’t.

 Examples of experimental research are laboratory experiments that involve mixing different chemical elements together to see the effect of one element on the other while non-experimental research examples are investigations into the characteristics of different chemical elements.

Consider a researcher carrying out a laboratory test to determine the effect of adding Nitrogen gas to Hydrogen gas. It may be discovered that using the Haber process, one can create Nitrogen gas.

Non-experimental research may further be carried out on Ammonia, to determine its characteristics, behaviour, and nature.

There are 3 types of experimental research, namely; experimental research, quasi-experimental research, and true experimental research. Although also 3 in number, non-experimental research can be classified into cross-sectional research, correlational research, and observational research.

The different types of experimental research are further divided into different parts, while non-experimental research types are not further divided. Clearly, these divisions are not the same in experimental and non-experimental research.

  • Characteristics

Experimental research is usually quantitative, controlled, and multivariable. Non-experimental research can be both quantitative and qualitative , has an uncontrolled variable, and also a cross-sectional research problem.

The characteristics of experimental research are the direct opposite of that of non-experimental research. The most distinct characteristic element is the ability to control or manipulate independent variables in experimental research and not in non-experimental research. 

In experimental research, a level of control is usually exerted on extraneous variables, therefore tampering with the natural research setting. Experimental research settings are usually more natural with no tampering with the extraneous variables.

  • Data Collection/Tools

  The data used during experimental research is collected through observational study, simulations, and surveys while non-experimental data is collected through observations, surveys, and case studies. The main distinction between these data collection tools is case studies and simulations.

Even at that, similar tools are used differently. For example, an observational study may be used during a laboratory experiment that tests how the effect of a control variable manifests over a period of time in experimental research. 

However, when used in non-experimental research, data is collected based on the researcher’s discretion and not through a clear scientific reaction. In this case, we see a difference in the level of objectivity. 

The goal of experimental research is to measure the causes and effects of variables present in research, while non-experimental research provides very little to no information about causal agents.

Experimental research answers the question of why something is happening. This is quite different in non-experimental research, as they are more descriptive in nature with the end goal being to describe what .

 Experimental research is mostly used to make scientific innovations and find major solutions to problems while non-experimental research is used to define subject characteristics, measure data trends, compare situations and validate existing conditions.

For example, if experimental research results in an innovative discovery or solution, non-experimental research will be conducted to validate this discovery. This research is done for a period of time in order to properly study the subject of research.

Experimental research process is usually well structured and as such produces results with very little to no errors, while non-experimental research helps to create real-life related experiments. There are a lot more advantages of experimental and non-experimental research , with the absence of each of these advantages in the other leaving it at a disadvantage.

For example, the lack of a random selection process in non-experimental research leads to the inability to arrive at a generalizable result. Similarly, the ability to manipulate control variables in experimental research may lead to the personal bias of the researcher.

  • Disadvantage

 Experimental research is highly prone to human error while the major disadvantage of non-experimental research is that the results obtained cannot be absolutely clear and error-free. In the long run, the error obtained due to human error may affect the results of the experimental research.

Some other disadvantages of experimental research include the following; extraneous variables cannot always be controlled, human responses can be difficult to measure, and participants may also cause bias.

  In experimental research, researchers can control and manipulate control variables, while in non-experimental research, researchers cannot manipulate these variables. This cannot be done due to ethical reasons. 

For example, when promoting employees due to how well they did in their annual performance review, it will be unethical to manipulate the results of the performance review (independent variable). That way, we can get impartial results of those who deserve a promotion and those who don’t.

Experimental researchers may also decide to eliminate extraneous variables so as to have enough control over the research process. Once again, this is something that cannot be done in non-experimental research because it relates more to real-life situations.

Experimental research is carried out in an unnatural setting because most of the factors that influence the setting are controlled while the non-experimental research setting remains natural and uncontrolled. One of the things usually tampered with during research is extraneous variables.

In a bid to get a perfect and well-structured research process and results, researchers sometimes eliminate extraneous variables. Although sometimes seen as insignificant, the elimination of these variables may affect the research results.

Consider the optimization problem whose aim is to minimize the cost of production of a car, with the constraints being the number of workers and the number of hours they spend working per day. 

In this problem, extraneous variables like machine failure rates or accidents are eliminated. In the long run, these things may occur and may invalidate the result.

  • Cause-Effect Relationship

The relationship between cause and effect is established in experimental research while it cannot be established in non-experimental research. Rather than establish a cause-effect relationship, non-experimental research focuses on providing descriptive results.

Although it acknowledges the causal variable and its effect on the dependent variables, it does not measure how or the extent to which these dependent variables change. It, however, observes these changes, compares the changes in 2 variables, and describes them.

Experimental research does not compare variables while non-experimental research does. It compares 2 variables and describes the relationship between them.

The relationship between these variables can be positively correlated, negatively correlated or not correlated at all. For example, consider a case whereby the subject of research is a drum, and the control or independent variable is the drumstick.

Experimental research will measure the effect of hitting the drumstick on the drum, where the result of this research will be sound. That is, when you hit a drumstick on a drum, it makes a sound.

Non-experimental research, on the other hand, will investigate the correlation between how hard the drum is hit and the loudness of the sound that comes out. That is, if the sound will be higher with a harder bang, lower with a harder bang, or will remain the same no matter how hard we hit the drum.

  • Quantitativeness

Experimental research is a quantitative research method while non-experimental research can be both quantitative and qualitative depending on the time and the situation where it is been used. An example of a non-experimental quantitative research method is correlational research .

Researchers use it to correlate two or more variables using mathematical analysis methods. The original patterns, relationships, and trends between variables are observed, then the impact of one of these variables on the other is recorded along with how it changes the relationship between the two variables.

Observational research is an example of non-experimental research, which is classified as a qualitative research method.

  • Cross-section

Experimental research is usually single-sectional while non-experimental research is cross-sectional. That is, when evaluating the research subjects in experimental research, each group is evaluated as an entity.

For example, let us consider a medical research process investigating the prevalence of breast cancer in a certain community. In this community, we will find people of different ages, ethnicities, and social backgrounds. 

If a significant amount of women from a particular age are found to be more prone to have the disease, the researcher can conduct further studies to understand the reason behind it. A further study into this will be experimental and the subject won’t be a cross-sectional group. 

A lot of researchers consider the distinction between experimental and non-experimental research to be an extremely important one. This is partly due to the fact that experimental research can accommodate the manipulation of independent variables, which is something non-experimental research can not.

Therefore, as a researcher who is interested in using any one of experimental and non-experimental research, it is important to understand the distinction between these two. This helps in deciding which method is better for carrying out particular research. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • non experimental research
  • busayo.longe

Formplus

You may also like:

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

explain the characteristics of non experimental research

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

Experimental Research Designs: Types, Examples & Methods

Ultimate guide to experimental research. It’s definition, types, characteristics, uses, examples and methodolgy

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 7: Nonexperimental Research

Overview of Nonexperimental Research

Learning Objectives

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research  is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are  not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This distinction is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this inability does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in  Chapter 6 , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which preferring nonexperimental research can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behaviour have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] . Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [2] .

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it  single-variable research . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This detail is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this design would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied  compares  with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied thereby introducing another variable.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In  quasi-experimental research , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256). [3] Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 7.1  shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it  could  be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

""

Notice also in  Figure 7.1  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in  Chapter 5.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyses the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

Research that focuses on a single variable rather than a statistical relationship between two variables.

The researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them.

The researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

explain the characteristics of non experimental research

Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Non-Experimental Research

28 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research. It is simply used in cases where experimental research is not able to be carried out.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., how accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach is appropriate. But the two approaches can also be used to address the same research question in complementary ways. For example, in Milgram’s original (non-experimental) obedience study, he was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. However,  Milgram subsequently conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into two broad categories: correlational research and observational research. 

The most common type of non-experimental research conducted in psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable. More specifically, in correlational research , the researcher measures two variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related.

Observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories).

Cross-Sectional, Longitudinal, and Cross-Sequential Studies

When psychologists wish to study change over time (for example, when developmental psychologists wish to study aging) they usually take one of three non-experimental approaches: cross-sectional, longitudinal, or cross-sequential. Cross-sectional studies involve comparing two or more pre-existing groups of people (e.g., children at different stages of development). What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect ) rather than a direct effect of age. For this reason, longitudinal studies , in which one group of people is followed over time as they age, offer a superior means of studying the effects of aging. However, longitudinal studies are by definition more time consuming and so require a much greater investment on the part of the researcher and the participants. A third approach, known as cross-sequential studies , combines elements of both cross-sectional and longitudinal studies. Rather than measuring differences between people in different age groups or following the same people over a long period of time, researchers adopting this approach choose a smaller period of time during which they follow people in different age groups. For example, they might measure changes over a ten year period among participants who at the start of the study fall into the following age groups: 20 years old, 30 years old, 40 years old, 50 years old, and 60 years old. This design is advantageous because the researcher reaps the immediate benefits of being able to compare the age groups after the first assessment. Further, by following the different age groups over time they can subsequently determine whether the original differences they found across the age groups are due to true age effects or cohort effects.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in psychiatric wards was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) falls in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the inability to randomly assign children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 6.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in  Figure 6.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational (non-experimental) studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

A research that lacks the manipulation of an independent variable.

Research that is non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.

Research that is non-experimental because it focuses on recording systemic observations of behavior in a natural or laboratory setting without manipulating anything.

Studies that involve comparing two or more pre-existing groups of people (e.g., children at different stages of development).

Differences between the groups may reflect the generation that people come from rather than a direct effect of age.

Studies in which one group of people are followed over time as they age.

Studies in which researchers follow people in different age groups in a smaller period of time.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

TestSiteForMe

Non-Experimental Studies in Research | Overview & Examples

Non-experimental studies are a vital and often overlooked part of research. In this article, we’ll explain the definition, types and characteristics of non-experimental studies as well as their advantages and disadvantages. Following this, we’ll go over some examples of non-experimental research across a range of different fields and provide some tips for undertaking these studies. Finally, we’ll explain how non-experimental studies can be combined with experimental studies to help strengthen your research.

Non-experimental studies are different from experimental studies in that they don’t involve manipulating variables. They don’t have a control group either. Instead, they rely on observation and analysis of existing data or natural events in an attempt to gain valuable insights into our understanding of the world.

Whether you’re a research student in psychology, sociology, education, or any other field, this article will give you a comprehensive overview of non-experimental studies and their role in research. So if you want to learn more about these critical research methods, keep reading!

Definition of Non-Experimental Studies

As mentioned before, non-experimental studies, also known as observational studies , are research methods that are used to observe and describe a phenomenon without manipulating a single variable. In other words, non-experimental studies don’t involve the controlled manipulation of an independent variable in order to see what effect it has on a dependent variable. On the contrary, non-experimental research relies on naturally occurring or existing data and do not involve any interventions from those undertaking the research.

Differences Between Experimental and Non-Experimental Studies

There are several critical differences between experimental and non-experimental studies that you ought to be aware of:

  • Control : In experimental studies, the researcher has complete control over the independent variable and can manipulate it to study its effects on the dependent variable. In non-experimental research, the researcher doesn’t have control over the variables; they can only observe and describe them.
  • Intervention : Experimental studies involve manipulating variables through some form of intervention, whether it be administering a treatment or altering a condition. Non-experimental studies, on the other hand, don’t involve any intervention. They simply describe the variables as they exist in their natural state.
  • Cause and effect : Experimental studies are designed to establish cause and effect relationships between variables. Non-experimental studies cannot establish cause and effect because they don’t involve changing variables, so it would be impossible to pinpoint certain effects onto any one thing.
  • Randomization : Experimental studies typically involve using randomization to assign subjects to treatment or control groups. Non-experimental research do not involve randomization .
  • Sample size : Experimental studies typically involve smaller sample sizes because they are more controlled and require fewer subjects to establish statistical significance. Non-experimental studies often involve larger sample sizes because they do not involve the manipulation of variables and therefore require more subjects to observe and describe the phenomenon.

In short, non-experimental studies help describe and understand phenomena but are not as helpful in establishing cause and effect relationships. However, non-experimental studies can be combined with experimental studies to provide a more comprehensive understanding of a phenomenon.

Types of Non-Experimental Studies

Researchers can use several types of non-experimental studies to investigate a research question or phenomenon. These include descriptive studies, correlational studies, and case studies.

Types of Non-experimental studies

1. Descriptive Studies

Descriptive studies are used to describe the characteristics of a group or population. These studies are often used to identify patterns or trends in a particular phenomenon. Researchers typically use survey methods or observational techniques to gather data in descriptive studies.

Examples of descriptive studies include surveys, observational studies, and demographic studies.

2. Correlational Studies

Correlational studies investigate the relationship between two or more variables. These studies do not seek to manipulate variables or determine cause and effect but rather explore whether there is a correlation between the variables being studied.

Researchers typically use statistical techniques to analyze data collected in correlational studies.

Examples of correlational studies include studies that investigate the causal relationship between exercise and mental health or the statistical relationship between social media use and academic performance.

3. Case Studies

Case studies involve an in-depth examination of a single individual, group, or event. These studies are often used to explore complex phenomena or to provide insight into a specific situation or context. Researchers typically use various methods to collect data in case studies, including interviews, observations, and document analysis.

Examples of case studies include studies that investigate the experiences of a single individual with a particular medical condition or the cultural dynamics of a small community.

Non-experimental studies provide valuable information and offer unique insights into a research question or phenomenon. While they have their limitations, they can be an essential part of the research process and can be used in combination with experimental studies to provide a more complete understanding of a topic.

Advantages of Non-Experimental Studies

Non-experimental studies have several advantages that make them useful for certain types of research. Some of the main benefits of non-experimental studies include:

  • Greater flexibility : Non-experimental studies are often more flexible than experimental studies, as they do not require the researcher to manipulate variables or control for extraneous factors. This means that researchers can more easily adapt their methods to changing circumstances or unexpected results.
  • Greater realism : Non-experimental studies often provide a more realistic and naturalistic portrayal of the research setting, as they do not involve the artificial manipulation of extraneous variables. This can make the results of non-experimental studies more generalizable to real-world situations.
  • Greater cost-effectiveness : Non-experimental studies are generally less expensive than experimental studies, as they do not require specialized equipment or procedures. This makes non-experimental studies a more cost-effective option for researchers on a budget.

Disadvantages of Non-Experimental Studies

Despite their advantages, non-experimental research also has several limitations that should be considered when deciding whether to use this type of study in research. Some of these include:

  • Lack of control over variables : One of the main limitations of non-experimental studies is the lack of control over variables. Researchers cannot manipulate variables or control for extraneous factors, so it is more difficult to establish cause and effect relationships.
  • Limited generalizability : They often have limited generalizability, as they are conducted in a specific context or population. This means that the results of non-experimental studies may not be applicable to other populations or settings.
  • Difficulty measuring change : Non-experimental studies are typically conducted at a single point in time, which makes it difficult to measure change over time. This can be a problem if the research question examines changes in behaviour or attitudes over time.
  • Potential bias : Non-experimental studies are prone to bias, as the researcher cannot control all factors that may affect the results. This means that the results of non-experimental studies may be influenced by factors not accounted for in the study design.

Examples of Non-Experimental Studies in Different Fields

  • Case studies : These are in-depth studies of a single individual or small group, often used to explore rare or unusual phenomena. For example, a case study of a person with a rare neurological disorder can provide insight into the symptoms and treatment options for that disorder.
  • Surveys : Surveys involve collecting data from a large number of people using self-report measures such as questionnaires or interviews. Surveys can be used to study various topics, from attitudes and beliefs to behaviours and experiences. For example, a survey of college students’ attitudes towards mental health treatment could provide valuable information for addressing the needs of this population.
  • Observational studies : Observational studies involve watching and recording the behaviour of people or animals in a natural setting. These studies can help understand social interactions and other complex behaviours. For example, an observational study of parenting styles in different cultures could provide insight into how parenting practices affect child development.
  • Ethnographies : Ethnographies involve detailed observations and interviews with members of a particular culture or community. They are often used to understand social norms, values, and beliefs in a specific group. For example, an ethnography of a rural community might examine how traditional gender roles are maintained and how they affect the lives of men and women in that community.
  • Content analysis : This involves systematically analyzing written or spoken texts (such as books, newspapers, or social media posts) to understand patterns or themes within a particular culture or society. For example, a content analysis of news articles about immigration might reveal underlying biases or stereotypes about immigrants.
  • Longitudinal studies : These are studies that follow the same group of people over an extended period of time. They can be used to understand how social or environmental factors affect people’s lives over time. For example, a longitudinal study of first-generation college students might examine how family and community support, financial stress, and other factors impact their academic success.
  • Action research : This involves researchers actively collaborating with teachers and students in a particular educational setting to identify problems and develop solutions. Action research can be useful for understanding and improving teaching and learning practices. For example, an action research project might involve a teacher working with researchers to design and implement a new teaching method and then evaluating the results to see if it was successful.
  • Narrative inquiry : This involves collecting and analyzing stories or narratives from individuals or groups to understand their experiences and perspectives. Narrative inquiry is often used in education to understand how students learn and how teachers teach. For example, a narrative inquiry study of high school students’ experiences with bullying might help educators understand the impact of bullying on academic performance and mental health.
  • Ethnographic case studies : These are in-depth studies of a particular school or classroom that use observations, interviews, and other data collection methods to understand the social and cultural factors that shape the educational experience. Ethnographic case studies can provide valuable insights into how education policies and practices affect students and teachers. For example, an ethnographic case study of a bilingual classroom might explore how language acquisition and cultural differences impact students’ learning.

How to Conduct Non-Experimental Studies: Tips and Best Practices

Conducting a non-experimental study can be a challenging task for research students. However, with proper planning and execution, it is possible to produce high-quality research using this method. Here are some tips and best practices for conducting a non-experimental study:

1. Planning and Designing the Study

  • Identify the research question and objectives : Clearly define your study’s research question and objectives. This will help you focus on the specific aspects of the research that you want to explore.
  • Determine the study sample size and sampling method : Consider the size and characteristics of the sample you need to answer your research question accurately. Choose a sampling method that is appropriate for your study and ensures that the sample is representative of the population. This will help make sure your findings will be backed by strong evidence.
  • Consider the limitations of the study : Be aware of the limitations of your study, including any biases or confounding variables that may affect the results. Consider how you can address these limitations in your original study design.
  • Develop a research plan : Create a detailed research plan outlining the steps you will take to conduct the study. This will help you stay organized and on track throughout the research process.

2. Data Collection and Analysis

  • Choose appropriate data collection methods : Select data collection methods appropriate for your research question and study design. This could include surveys, interviews, observations, or existing data sources.
  • Ensure the validity and reliability of data collection methods : Ensure that the data collection methods you use are valid and reliable. Validity refers to whether the data accurately measures what it is intended to measure. Reliability refers to the consistency of the results.
  • Use appropriate data analysis techniques : Choose data analysis techniques appropriate for the type of data you have collected and the research question you are trying to answer. This could include descriptive statistics, correlation analysis, or regression analysis.

3. Interpreting and Reporting Results

  • Interpret the results accurately: Carefully interpret the results of your study, keeping in mind the study’s limitations and possible biases or confounding variables .
  • Report the results clearly and concisely : Present the results of your study clearly and concisely, using appropriate graphs, tables, and statistical analyses to illustrate the findings.
  • Conclusion: Summarize the main findings and implications of the study : In the conclusion, summarize the study’s main findings and discuss their implications for the research field. Consider how the results of the study contribute to the existing body of knowledge and identify any areas for future research.

How to Use Non-Experimental Studies in Combination with Experimental Studies

There are two main ways to combine non-experimental studies with experimental studies: triangulation and meta-analysis.

Combining experimental and non-experimental studies

Triangulation

Triangulation is the use of multiple methods, data sources, or perspectives in a study to increase the validity of the results. This can include combining experimental and non-experimental studies.

For example, a researcher may conduct an experimental study to test a specific hypothesis and then follow it up with a non-experimental study using a different method, such as a survey or case study, to provide additional support for the results.

Using triangulation allows researchers to confirm or enrich the findings from one method with the findings from another method. It also allows researchers to explore different aspects of a research question and address a single method’s potential limitations.

Meta-Analysis

Meta-analysis is a statistical method that combines the results from multiple studies to provide a more precise estimate of the effect size. This is particularly useful when the analysed studies have different designs, such as experimental and non-experimental studies.

Meta-analysis allows researchers to combine the results from multiple studies and to identify patterns and trends that may not be apparent in individual studies. It also allows researchers to account for differences in study design, sample size, and other factors that may affect the results.

However, it’s important to note that meta-analysis is only appropriate when the studies being analyzed are sufficiently similar and when the data can be combined in a meaningful way.

Conclusion: The Role of Non-Experimental Studies in Research

Non-experimental studies are an essential and valuable tool in research. They allow researchers to explore complex phenomena and relationships in natural settings, examine individual cases in depth, and study a variety of contexts and perspectives.

While non-experimental studies may not have the same level of control as experimental studies, they can provide valuable insights and can be used in combination with experimental studies to increase the validity and generalizability of research findings.

In conclusion, non-experimental studies have a valuable role in research and should be considered a viable option for addressing research questions.

Gabriel Arteaga

Understanding Control Groups in Research Studies

Academic Journals

What Are Academic Journals? | A Comprehensive Guide

Related posts.

What is Meta-Ethnography

Using Meta-Ethnography in Qualitative Research: Techniques and Examples

What is Q Methodology Research

How to Conduct Q Methodology in Qualitative Research: Techniques and Examples

What is Exploratory Factor Analysis

What is Exploratory Factor Analysis? | A Beginners Guide

What is the Constant Comparative Method

The Constant Comparative Method | Explanation and Examples

Type above and press Enter to search. Press Esc to cancel.

explain the characteristics of non experimental research

Logo for TRU Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

22 Experimental vs. Non-Experimental Research

The next step a researcher must take is to decide which type of approach they will use to collect the data. As you will learn in your research methods course there are many different approaches to research that can be divided in many different ways. One of the most fundamental distinctions is between experimental and non-experimental research.

Experimental Research

Researchers who want to test hypotheses about causal relationships between variables (i.e., their goal is to explain) need to use an experimental method. This is because the experimental method is the only method that allows us to determine causal relationships. Using the experimental approach, researchers first manipulate one or more variables while attempting to control extraneous variables, and then they measure how the manipulated variables affect participants’ responses.

The terms independent variable and dependent variable are used in the context of experimental research. The independent variable is the variable the experimenter manipulates (it is the presumed cause) and the dependent variable is the variable the experimenter measures (it is the presumed effect).

Extraneous variables are any variable other than the dependent variable. Confounds are a specific type of extraneous variable that systematically varies along with the variables under investigation and therefore provides an alternative explanation for the results. When researchers design an experiment, they need to ensure that they control for confounds; they need to ensure that extraneous variables don’t become confounding variables because in order to make a causal conclusion they need to make sure alternative explanations for the results have been ruled out.

As an example, if we manipulate the lighting in the room and examine the effects of that manipulation on workers’ productivity, then the lighting conditions (bright lights vs. dim lights) would be considered the independent variable and the workers’ productivity would be considered the dependent variable. If the bright lights are noisy then that noise would be a confound since the noise would be present whenever the lights are bright and the noise would be absent when the lights are dim. If noise is varying systematically with light, then we wouldn’t know if a difference in worker productivity across the two lighting conditions is due to noise or light. So, confounds are bad, they disrupt our ability to make causal conclusions about the nature of the relationship between variables. However, if there is noise in the room both when the lights are on and when the lights are off then noise is merely an extraneous variable (it is a variable other than the independent or dependent variable) and we don’t worry much about extraneous variables. This is because unless a variable varies systematically with the manipulated independent variable it cannot be a competing explanation for the results.

Non-Experimental Research

Researchers who are simply interested in describing characteristics of phenomena, describing relationships between variables, and using those relationships to make predictions can use non-experimental research. Using the non-experimental approach, the researcher simply measures variables as they naturally occur, but they do not manipulate them. For instance, if I just measured the number of traffic fatalities in America last year that involved the use of a cell phone but I did not actually manipulate cell phone use then this would be categorized as non-experimental research. Alternatively, if I stood at a busy intersection and recorded drivers’ genders and whether or not they were using a cell phone when they passed through the intersection to see whether men or women are more likely to use a cell phone when driving, then this would be non-experimental research. It is important to point out that non-experimental does not mean non-scientific. Non-experimental research is scientific in nature. It can be used to fulfill two of the three goals of science (to describe and to predict). However, unlike with experimental research, we cannot make causal conclusions using this method; we cannot say that one variable causes another variable using this method.

Laboratory vs. Field Research

The next major distinction between research methods is between laboratory and field studies. A laboratory study is a study that is conducted in the laboratory environment. In contrast, a field study is a study that is conducted in the real-world, in a natural environment.

Laboratory experiments typically have high internal validity. Internal validity refers to the degree to which we can confidently infer a causal relationship between variables. When we conduct an experimental study in a laboratory environment, we have very high internal validity because we manipulate one variable while controlling all other outside extraneous variables. When we manipulate an independent variable and observe an effect on a dependent variable and we control for everything else so that the only difference between our experimental groups or conditions is the one manipulated variable then we can be quite confident that it is the independent variable that is causing the change in the dependent variable. In contrast, because field studies are conducted in the real-world, the experimenter typically has less control over the environment and potential extraneous variables, and this decreases internal validity, making it less appropriate to arrive at causal conclusions.

But there is typically a trade-off between internal and external validity. External validity simply refers to the degree to which we can generalize the findings to other circumstances or settings, like the real-world environment. When internal validity is high, external validity tends to be low; and when internal validity is low, external validity tends to be high. So, laboratory studies are typically low in external validity, while field studies are typically high in external validity. Since field studies are conducted in the real-world environment it is far more appropriate to generalize the findings to that real-world environment than when the research is conducted in the more artificial sterile laboratory.

Finally, there are field studies which are non-experimental in nature because nothing is manipulated. But there are also field experiments where an independent variable is manipulated in a natural setting and extraneous variables are controlled. Depending on their overall quality and the level of control of extraneous variables, such field experiments can have high external and high internal validity.

Critical Thinking Copyright © by Dinesh Ramoo, Thompson Rivers University Open Press is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7.1 Overview of Nonexperimental Research

Learning objectives.

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This is because while experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in Chapter 6 “Experimental Research” , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which this can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behavior have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001). Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974).

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it single-variable research . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied compares with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In quasi-experimental research , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In qualitative research , the data are usually nonnumerical and are analyzed using nonstatistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256).

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable. Figure 7.1 shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it could be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still

Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in Figure 7.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyzes the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.

Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage.

Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row.

Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

IMAGES

  1. Explain Different Types of Non Experimental Research Design

    explain the characteristics of non experimental research

  2. PPT

    explain the characteristics of non experimental research

  3. PPT

    explain the characteristics of non experimental research

  4. Myers chapter 1 (B): Non-Experimental Research Designs

    explain the characteristics of non experimental research

  5. PPT

    explain the characteristics of non experimental research

  6. 7.1 Overview of Non-Experimental Research

    explain the characteristics of non experimental research

COMMENTS

  1. 6.1 Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). ... If the goal is to explain and the research question pertains to causal ...

  2. Non-experimental research: What it is, Types & Tips

    Characteristics of non-experimental research. Some of the essential characteristics of non-experimental research are necessary for the final results. Let's talk about them to identify the most critical parts of them. Most studies are based on events that occurred previously and are analyzed later.

  3. What is non-experimental research: Definition, types & examples

    Non-experimental research does not involve the manipulation of variables.; The aim of this research type is to explore the factors as they naturally occur.; This method is used when experimentation is not possible because of ethical or practical reasons.; Instead of creating a sample or participant group, the existing groups or natural thresholds are used during the research.

  4. Non-Experimental Research: Designs, Characteristics, Types and Examples

    By its own characteristics, if the research is experimental it will be much easier to repeat it to ensure the results. However, the control of the environment makes some variables that may appear spontaneously more difficult to measure. It is just the opposite of what happens with non-experimental designs. characteristics

  5. Experimental Vs Non-Experimental Research: 15 Key Differences

    Observational research is an example of non-experimental research, which is classified as a qualitative research method. Cross-section; Experimental research is usually single-sectional while non-experimental research is cross-sectional. That is, when evaluating the research subjects in experimental research, each group is evaluated as an entity.

  6. Overview of Nonexperimental Research

    This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research, the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of ...

  7. Overview of Non-Experimental Research

    Observational research is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram's original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants ...

  8. Non-Experimental Studies in Research

    Definition of Non-Experimental Studies. As mentioned before, non-experimental studies, also known as observational studies, are research methods that are used to observe and describe a phenomenon without manipulating a single variable.In other words, non-experimental studies don't involve the controlled manipulation of an independent variable in order to see what effect it has on a dependent ...

  9. Experimental vs. Non-Experimental Research

    One of the most fundamental distinctions is between experimental and non-experimental research. Experimental Research. Researchers who want to test hypotheses about causal relationships between variables (i.e., their goal is to explain) need to use an experimental method. This is because the experimental method is the only method that allows us ...

  10. 7.1 Overview of Nonexperimental Research

    When to Use Nonexperimental Research. As we saw in Chapter 6 "Experimental Research", experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of ...